Math 115
Fall 2017
Lecture 13

Graphing/ Shading linear inequalities:
Dashed lines
$x<a$ Left lid lines $x \leq a$ vertical $x>a \quad$ Right $x \geq a$ lines $y<b$ below $y \leq b$ Horizontal $y>b$ Above $y \geq b$ line $y<m x+b$ below $y \leq m x+b$ Slant $y>m x+b$ above $y \geq m x+b$ lines

Graph \& Shade
$x>3$

$y \leq-2$

Graph \& Shade Hint: Write in
$2 x-3 y \leq 6$
slope-Int form

$$
-3 y[\leq-2 x+6
$$

Divide by -3

$$
\begin{gathered}
\frac{-3}{-3} y \geq \frac{-2}{-3} x+\frac{6}{-3} \\
y \geq \frac{2}{3} x-2
\end{gathered}
$$

Graph \& Shade

$$
\left\{\begin{array}{l}
x \leq 4 \\
y>-2 \\
y<\frac{2}{3} x+1
\end{array}\right.
$$

Final answer should be the region shaded bs all Three.

Graph \& shade

$$
\left\{\begin{array}{l}
y<3 \\
y \geq \frac{3}{4} x-2 \\
y \geq \frac{-3}{4} x-2
\end{array}\right.
$$

System of linear Equations in 2-Variables. $\begin{cases}x+y=5 & \text { A solution if exists, is } \\ x-y=1 & \text { an ordered-puir that }\end{cases}$ has to Satisfy all
Is $(1,4)$ a equations in the system.
Solution for the system above?

$$
\begin{array}{ll}
\text { olution for the system above? } \\
x+y=5 & x-y=1 \\
1+4=5 v & 1-4=1 \\
-3=1
\end{array}\left\{\begin{array}{c}
(1,4) \text { is false } \\
\text { not a } \\
\text { solution. }
\end{array}\right\}
$$

Is $(3,2)$ a Solution of

$$
\left\{\begin{array}{lrr}
x+y=5 & 3+2=5 & 3-2=1 \\
x-y=1 & 5=5 & 1=1 \sim
\end{array}\right.
$$

So $(3,2)$ is a Solution of the system.
Is $(-4,2) \quad$ a solution of $\left\{\begin{array}{l}x+2 y=0 \\ x+2 y=0 \quad-3 x+4 y=-20\end{array}\right.$? $\quad \begin{array}{l}-3 x+4 y=-20\end{array}$?

$$
\begin{array}{rr}
-4+2(2)=0 & -3(-4)+4(2) \\
-4+4=0 & 12+8 \\
-20 & =-20 \\
20 & =-20 \text { false }\left[\begin{array}{c}
-4,2) \text { is } \\
\text { not a } \\
\text { soln }
\end{array}\right.
\end{array}
$$

we Study 3 methods in this class on how to solve sustem of equations

1) Graphing
2) Substitution
3) Himination

$$
\left\{\begin{array}{l}
x+y=5 \\
x-y=1
\end{array}\right.
$$

Solve by graphing

$$
\left\{\begin{array}{l}
3 x+2 y=6 \\
y=\frac{-3}{2} x-3
\end{array}\right.
$$

Parallel lines
No intersection Point

Solve by graphing

$$
\left\{\begin{array}{l}
3 x-4 y=-12 \\
y=\frac{3}{4} x+3
\end{array}\right.
$$

$$
\begin{gathered}
\left\{\begin{array}{cc}
3 x-2 y=5 & \text { Substitution method } \\
y=x-4 & 3 x-2(x-4)=5
\end{array}\right. \\
y=-3-4 \\
\begin{array}{c}
3 x-2 x+8=5 \\
y=-7
\end{array} \quad x=5-8 \\
x=-3
\end{gathered}
$$

Solve by Subs. method:

$$
\begin{gathered}
\left\{\begin{array}{lr}
5 x+2 y=-10 & 5 x+2(-4-2 x)=-10 \\
y=-4-2 x & 5 x-8-4 x=-10 \\
y=-4-2(-2) & x-8=-10 \\
=-4+4 \\
y=0 & x=-10+8 \\
x=-2
\end{array}\right. \\
\end{gathered}
$$

The sum of two numbers is 5 one of them is 3 more than the other one. use system of linear eqns in two variables to find them.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+y=5 \\
x=y+3
\end{array}\right. \\
& \begin{array}{l}
\text { use subs. method. } \\
\text { Numbers are } \\
4 \text { and } 1 .
\end{array} \\
& \hline
\end{aligned}
$$

Perimeter of a rectangular room is 44 ft . Its length is 1 ft more than twice its width.
Use System of linear eqns in two variables
to find its dimensions. 9 ft by 15 ft
\square w

$$
\left\{\begin{array}{lc}
2 L+2 w=44 & L \\
L=2 w+1 & 2(2 w+1)+2 w=44
\end{array}\right\} \begin{array}{ll}
L=2(7)+1 & 4 w+2+2 w=44 \\
L=15 & 6 w=42 \\
w=7
\end{array}
$$

Solve by Subs.

$$
\begin{cases}6 x-3 y=5 & 6 x-3(2 x-3)=5 \\ y=2 x-3 & 6 x-6 x+9=5 \\ 9=5 \text { false }\end{cases}
$$

$$
\begin{cases}4 x-y=8 & 4 x-(4 x-8)=8 \\ y=4 x-8 & 4 x-4 x+8=8 \\ 8=8\end{cases}
$$

Infinitely Many Solutions True

Solve by Addition/Elimination method:

$$
\begin{aligned}
& \begin{aligned}
3\left\{\begin{array}{l}
2 x-y \\
-x+3 y \\
-x+2 \\
d
\end{array}\right. \\
-(-2)+3 y=-4
\end{aligned} \Rightarrow \begin{array}{l}
\begin{cases}6 x-3 y=-6 \\
-x+3 y & =-4\end{cases} \\
5 x
\end{array} \\
& -(-2)+3 y=-4 \\
& x=-2 \\
& 2+3 y=-4 \quad y=-2 \\
& 3 y=-4-2 \\
& 3 y=-6 \\
& (-2,-2)
\end{aligned}
$$

Solve by elimination method

$$
\begin{aligned}
& -5\left\{\begin{array}{l}
x+4 y=14 \\
5 x+3 y=2
\end{array} \Rightarrow \begin{array}{l}
\left\{\begin{array}{l}
-5 x-20 y=-70 \\
5 x+3 y=2
\end{array}\right. \\
x+4(4)=14 \\
x+16=14 \\
x=-2
\end{array} \quad y=-17 y=-68\right.
\end{aligned}
$$

$$
(-2,4)
$$

Solve by elimination

$$
\left.\begin{array}{l}
3\left\{\begin{array}{l}
-2 x+3 y=10 \\
2\left(\begin{array}{l}
-4 y=2 \\
3 x+2
\end{array}\right. \\
\left.\begin{array}{l}
3 x+4 \\
2
\end{array}\right)=2 \\
6 x+8 y=4
\end{array}\right. \\
17 y=34 \\
y=2
\end{array}\right\} \begin{aligned}
& -6 x+9 y=30 \\
& 3 x+8=2 \\
& 3 x=2-8 \\
& 3 x=-6 \\
& x=-2
\end{aligned}
$$

Solve by elimination/addition:

$$
\begin{array}{r}
-3\left\{\begin{array} { l }
{ 3 x + y = 4 } \\
{ 9 x + 3 y = - 6 }
\end{array} \Rightarrow \left\{\begin{array}{r}
-9 x-3 y=-12 \\
9 x+3 y=-6
\end{array}\right.\right. \\
\text { false }=-18
\end{array}
$$

Solve
$\div 2\{4 x-6 y=8$ even, Divisible byz
$\therefore 36 x-9 y=12 \quad$ Divisible by 3

$$
\begin{array}{ll}
\begin{cases}2 x & -3 y=4 \\
2 x & -3 y=4\end{cases}
\end{array} \Rightarrow \frac{\left\{\begin{array}{ll}
2 x & -3 y=4 \\
-2 x & +3 y
\end{array}=-4\right.}{}
$$

$$
\left\{\begin{array}{c}
3 \begin{cases}x-\frac{y}{3}=-1 & L C D=3 \\
8 & \begin{cases}\frac{-x}{2}+\frac{y}{8}=\frac{1}{4} & L C D=8\end{cases} \\
\begin{array}{ll}
3 x-y=-3 & -4 x+y=2 \\
-4 x+y=2 & -4(1)+y=2
\end{array} \\
-x=-1 & -4+y=2 \\
x=1 & y=6\end{cases} \\
\end{array}\right.
$$

Solve
Hint: Clear fractions
$\begin{array}{ll}8 & \begin{cases}\frac{x}{2}+\frac{y}{8}=3 & L C D=8 \\ x-\frac{y}{4}=0 & L C D=4\end{cases} \end{array}$ by using LCD.

$$
\begin{array}{cc}
\left\{\begin{array}{l}
4 x+y=24 \\
4 x-y=0
\end{array}\right. & 4(3)-y=0 \\
\frac{8 x}{8 x} & 12=24 \\
x=3 & (3,12)
\end{array}
$$

Solve
Hint: See last example.

$$
\begin{gathered}
4\left\{\begin{array}{l}
\frac{x}{2}+\frac{y}{4}=1 \quad L C D=4 \\
8-\frac{x}{4}=1 \quad L C D=8
\end{array}\right. \\
\left\{\begin{array}{l}
2 x+y=4 \\
-2 x-y=8
\end{array}\right. \\
==12 \quad \text { False }
\end{gathered}
$$

Jose has $\$ 3.80$ in Dimes i \mathcal{E} Quarters.
He has 20 coins. How many of each?

$$
\begin{aligned}
& \div 5\left\{\begin{array} { l }
{ D + Q = 2 0 } \\
{ 1 0 D + 2 5 Q = 3 8 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
D+Q=20 \\
2 D+5 Q=76
\end{array}\right.\right. \\
& \begin{array}{r}
\left.\begin{array}{r}
-2 D-2 Q \\
2 D+40 \\
2 D+5 Q
\end{array}\right)=76 \\
3 Q=36 \\
Q=12
\end{array}\left\{\begin{array}{c}
12 \text { Quarters } \\
\dot{\Sigma} \\
8 \text { Dimes }
\end{array}\right\}
\end{aligned}
$$

find eqn of a line that contains $(-4,2)$ and parallel to $y=\frac{1}{2} x-1$.

Same slope $m=\frac{1}{2}$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-2=\frac{1}{2}(x--4) \\
& y-2=\frac{1}{2}(x+4) \quad y-2=\frac{1}{2} x+2 \\
& y=\frac{1}{2} x+4
\end{aligned}
$$

find eqn of a line that contains $(3,-5)$ and perpendicular to $y=-\frac{3}{4} x+2$.

$$
y-\frac{4}{3}=\frac{4}{3} \frac{3}{4}=-1
$$

Find eqn of a line that contains $(5,0) \quad \dot{ }(0,-2)$.

$$
m=\frac{0-(-2)}{5-0}=\frac{2}{5}
$$

$$
\begin{aligned}
& y--2=\frac{2}{5}(x-0) \\
& y+2=\frac{2}{5} x
\end{aligned}
$$

Exam II Monday
Project I Monday

$$
y=\frac{2}{5} x-2
$$

Be prepared to turn in
SG 9 ह10 tomorrow.

